La division de nombres entiers

 

 

Voici les étapes à suivre pour effectuer une division de nombres entiers.

Étape 1 : On place le diviseur dans un « crochet ».

 

Étape 2 : On va de la gauche vers la droite du dividende. Si un seul chiffre ne fonctionne pas, il faut en prendre deux. Si deux ne fonctionnent pas, en prendre trois et ainsi de suite.



On se demande combien de fois le diviseur (9) entre dans 3.
9 n’entre pas dans 3 puisque 3 est plus petit que 9. Dans ce cas les deux chiffres les plus à gauche du nombre.



On se demande combien de fois 9 entre dans 30
9 entre 3 fois dans 30 puisque 3 x 9 = 27
Alors, on place le résultat (3) sous le crochet, et on multiplie ce chiffre sous le crochet par le chiffre dans le crochet (3 × 9 =27). On inscrit ce nouveau résultat sous 30.

 

Si on ne peut pas obtenir précisément le nombre recherché (dans l’exemple, c’est 30), on doit choisir un multiple du diviseur qui donne un produit le plus proche, mais plus petit que ce nombre.

Ainsi, on n'aurait pas pu choisir 4 dans l'exemple précédent parce que 4 x 9 = 36 > 30.

 

Étape 3 :  On effectue la soustraction.

 

Étape 4 : On abaisse le chiffre suivant du dividende à la droit de la réponse de la soustraction.

 

Étape 5 : On répète les étapes 2 et 3 avec ce nouveau nombre, soit 36 pour l'exemple.

Combien de fois 9 (le diviseur) entre dans 36?
9 entre 4 fois dans 36 à 4 x 9 = 36.
On place ce résultat (36) sous l’autre 36 et on effectue la soustraction.



Même si la réponse de la soustraction égale zéro (0), ce n’est pas terminé puisqu’il reste un chiffre à abaisser. On poursuit avec la même démarche.

 

Étape 6 : On abaisse le chiffre restant à côté du zéro, soit 9 dans l'exemple.



Combien de fois 9 entre dans 9?
9 entre une ( 1 ) fois dans 9 car 9 × 1 = 9
On place 9 sous 09 et on effectue la soustraction .
9 – 9 = 0

 

Étape 7 : Si la réponse à la dernière soustraction est 0, cela signifie non seulement que la division est terminée, mais aussi qu'il n'y a pas de reste. Cependant, ce n'est pas toujours le cas.

 

En effet, il peut arriver qu'il y ait un reste après la division. Il y a plusieurs façons d'exprimer ce reste.

1re façon : Division avec reste

Si la dernière soustraction donne un résultat autre que 0, on peut utiliser ce dernier résultat comme reste.

En effectuant 3074 ÷ 8 = 384, mais il reste un 2 à la fin de la dernière soustraction. On dira donc que la réponse est : 384 reste 2.
On pourrait aussi expremier le reste en fraction et dire : 384 et 2/8 ou 384 et 1/4.

 

2e façon : Quotient sous forme décimale

On peut aussi poursuivre la division en ajoutant des décimales à la réponse.

  1. Une fois tous les chiffres du dividende abaissés, on inscrit une virgule à côté de la réponse, ce qui permet d’ajouter un zéro (0) à droite de la réponse de la soustraction (dans ce cas-ci, le 2 devient 20).
  2. Par la suite, on ajoute un zéro (0) à la droite de chaque résultat de soustraction.
  3. On arrête quand le résultat d’une soustraction donne zéro (0).

Il se peut également qu’une division se termine après plusieurs décimales ou ne se termine pas du tout. Si tel est le cas, on arrête pour arrondir la réponse à la position demandée.

 

Les exercices

Les références

Exemple d'une division par crochet


  • MELS
  • Rogers
  • Réunir Réussir
  • Fondation Réussite Jeunesse